Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Emerg Infect Dis ; 30(4): 721-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526136

RESUMO

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells. The combined effort resulted in successful virus isolation; however, no single approach was successful for all 4 simarteriviruses. We describe several approaches that might be used to isolate additional simarteriviruses for phenotypic characterization. Our results will expedite laboratory studies of simarteriviruses to elucidate virus-host interactions, assess zoonotic risk, and develop medical countermeasures.


Assuntos
Arterivirus , Animais , Camundongos , Arterivirus/genética , Macaca , Macrófagos , Linhagem Celular
2.
Diabetes ; 72(11): 1629-1640, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625150

RESUMO

Costimulation serves as a critical checkpoint for T-cell activation, and several genetic variants affecting costimulatory pathways confer risk for autoimmune diseases. A single nucleotide polymorphism (rs763361) in the CD226 gene encoding a costimulatory receptor increases susceptibility to multiple autoimmune diseases, including type 1 diabetes. We previously found that Cd226 knockout protected NOD mice from disease, but the impact of CD226 on individual immune subsets remained unclear. Our prior reports implicate regulatory T cells (Tregs), as human CD226+ Tregs exhibit reduced suppressive function. Hence, we hypothesized that genomic Cd226 gene deletion would increase Treg stability and that Treg-specific Cd226 deletion would inhibit diabetes in NOD mice. Indeed, crossing NOD.Cd226-/- and a NOD Treg-lineage tracing strain resulted in decreased pancreatic Foxp3-deficient "ex-Tregs." We generated a novel Treg-conditional knockout (TregΔCd226) strain that displayed decreased insulitis and diabetes incidence. CD226-deficient pancreatic Tregs had increased expression of the coinhibitory counter-receptor T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT). Moreover, NOD splenocytes treated with TIGIT-Fc fusion protein exhibited reduced T-cell proliferation and interferon-γ production following anti-CD3/CD28 stimulation. This study demonstrates that a CD226/TIGIT imbalance contributes to Treg instability in NOD mice and highlights the potential for therapeutic targeting this costimulatory pathway to halt autoimmunity.

3.
J Immunol ; 211(7): 1108-1122, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594278

RESUMO

IL-2 has been proposed to restore tolerance via regulatory T cell (Treg) expansion in autoimmunity, yet off-target effects necessitate identification of a combinatorial approach allowing for lower IL-2 dosing. We recently reported reduced levels of immunoregulatory insulin-like growth factor-1 (IGF1) during type 1 diabetes progression. Thus, we hypothesized that IGF1 would synergize with IL-2 to expand Tregs. We observed IGF1 receptor was elevated on murine memory and human naive Treg subsets. IL-2 and IGF1 promoted PI3K/Akt signaling in Tregs, inducing thymically-derived Treg expansion beyond either agent alone in NOD mice. Increased populations of murine Tregs of naive or memory, as well as CD5lo polyclonal or CD5hi likely self-reactive, status were also observed. Expansion was attributed to increased IL-2Rγ subunit expression on murine Tregs exposed to IL-2 and IGF1 as compared with IL-2 or IGF1 alone. Assessing translational capacity, incubation of naive human CD4+ T cells with IL-2 and IGF1 enhanced thymically-derived Treg proliferation in vitro, without the need for TCR ligation. We then demonstrated that IGF1 and IL-2 or IL-7, which is also IL-2Rγ-chain dependent, can be used to induce proliferation of genetically engineered naive human Tregs or T conventional cells, respectively. These data support the potential use of IGF1 in combination with common γ-chain cytokines to drive homeostatic T cell expansion, both in vitro and in vivo, for cellular therapeutics and ex vivo gene editing.


Assuntos
Fator de Crescimento Insulin-Like I , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Interleucina-2 , Fosfatidilinositol 3-Quinases , Proliferação de Células
4.
Lab Anim (NY) ; 52(7): 149-168, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386161

RESUMO

Humanized mouse models, created via transplantation of human hematopoietic tissues into immune-deficient mice, support a number of research applications, including transplantation immunology, virology and oncology studies. As an alternative to the bone marrow, liver, thymus humanized mouse, which uses fetal tissues for generating a chimeric human immune system, the NeoThy humanized mouse uses nonfetal tissue sources. Specifically, the NeoThy model incorporates hematopoietic stem and progenitor cells from umbilical cord blood (UCB) as well as thymus tissue that is typically discarded as medical waste during neonatal cardiac surgeries. Compared with fetal thymus tissue, the abundant quantity of neonatal thymus tissue offers the opportunity to prepare over 1,000 NeoThy mice from an individual thymus donor. Here we describe a protocol for processing of the neonatal tissues (thymus and UCB) and hematopoietic stem and progenitor cell separation, human leukocyte antigen typing and matching of allogenic thymus and UCB tissues, creation of NeoThy mice, assessment of human immune cell reconstitution and all experimental steps from planning and design to data analysis. This entire protocol takes a total of ~19 h to complete, with steps broken up into multiple sessions of 4 h or less that can be paused and completed over multiple days. The protocol can be completed, after practice, by individuals with intermediate laboratory and animal handling skills, enabling researchers to make effective use of this promising in vivo model of human immune function.


Assuntos
Sistema Imunitário , Timo , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Fígado , Pesquisadores
5.
Front Immunol ; 14: 1142648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325626

RESUMO

The autoimmune pathogenesis of type 1 diabetes (T1D) involves cellular infiltration from innate and adaptive immune subsets into the islets of Langerhans within the pancreas; however, the direct cytotoxic killing of insulin-producing ß-cells is thought to be mediated primarily by antigen-specific CD8+ T cells. Despite this direct pathogenic role, key aspects of their receptor specificity and function remain uncharacterized, in part, due to their low precursor frequency in peripheral blood. The concept of engineering human T cell specificity, using T cell receptor (TCR) and chimeric antigen receptor (CAR)-based approaches, has been demonstrated to improve adoptive cell therapies for cancer, but has yet to be extensively employed for modeling and treating autoimmunity. To address this limitation, we sought to combine targeted genome editing of the endogenous TCRα chain gene (TRAC) via CRISPR/Cas9 in combination with lentiviral vector (LV)-mediated TCR gene transfer into primary human CD8+ T cells. We observed that knockout (KO) of endogenous TRAC enhanced de novo TCR pairing, which permitted increased peptide:MHC-dextramer staining. Moreover, TRAC KO and TCR gene transfer increased markers of activation and effector function following activation, including granzyme B and interferon-γ production. Importantly, we observed increased cytotoxicity toward an HLA-A*0201+ human ß-cell line by HLA-A*02:01 restricted CD8+ T cells engineered to recognize islet-specific glucose-6-phosphatase catalytic subunit (IGRP). These data support the notion of altering the specificity of primary human T cells for mechanistic analyses of autoreactive antigen-specific CD8+ T cells and are expected to facilitate downstream cellular therapeutics to achieve tolerance induction through the generation of antigen-specific regulatory T cells.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Celular
6.
Stem Cell Reports ; 18(2): 585-596, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36638788

RESUMO

Macrophages armed with chimeric antigen receptors (CARs) provide a potent new option for treating solid tumors. However, genetic engineering and scalable production of somatic macrophages remains significant challenges. Here, we used CRISPR-Cas9 gene editing methods to integrate an anti-GD2 CAR into the AAVS1 locus of human pluripotent stem cells (hPSCs). We then established a serum- and feeder-free differentiation protocol for generating CAR macrophages (CAR-Ms) through arterial endothelial-to-hematopoietic transition (EHT). CAR-M produced by this method displayed a potent cytotoxic activity against GD2-expressing neuroblastoma and melanoma in vitro and neuroblastoma in vivo. This study provides a new platform for the efficient generation of off-the-shelf CAR-Ms for antitumor immunotherapy.


Assuntos
Melanoma , Neuroblastoma , Células-Tronco Pluripotentes , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia/métodos , Células-Tronco Pluripotentes/patologia , Melanoma/terapia , Neuroblastoma/terapia , Neuroblastoma/patologia , Macrófagos/patologia
7.
Transpl Int ; 35: 10817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545154

RESUMO

Genome editing has the potential to revolutionize many investigative and therapeutic strategies in biology and medicine. In the field of regenerative medicine, one of the leading applications of genome engineering technology is the generation of immune evasive pluripotent stem cell-derived somatic cells for transplantation. In particular, as more functional and therapeutically relevant human pluripotent stem cell-derived islets (SCDI) are produced in many labs and studied in clinical trials, there is keen interest in studying the immunogenicity of these cells and modulating allogeneic and autoimmune immune responses for therapeutic benefit. Significant experimental work has already suggested that elimination of Human Leukocytes Antigen (HLA) expression and overexpression of immunomodulatory genes can impact survival of a variety of pluripotent stem cell-derived somatic cell types. Limited work published to date focuses on stem cell-derived islets and work in a number of labs is ongoing. Rapid progress is occurring in the genome editing of human pluripotent stem cells and their progeny focused on evading destruction by the immune system in transplantation models, and while much research is still needed, there is no doubt the combined technologies of genome editing and stem cell therapy will profoundly impact transplantation medicine in the future.


Assuntos
Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Humanos , Engenharia Genética , Edição de Genes , Transplante de Células-Tronco
8.
Front Immunol ; 13: 873560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693814

RESUMO

Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells expressing the transcription factors, FOXP3 and Helios, that canonically define lineage stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being highly expressed not only on effector T cells but also, interferon-γ (IFN-γ) producing peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a CD4+CD25+CD226- strategy yields a population with increased purity and suppressive capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR). Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines, IFN-γ, TNF, and IL-17A, along with increased expression of the immunoregulatory cytokine, TGF-ß1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive capacity as compared to their CD127lo/- counterparts. These data suggest that the exclusion of CD226-expressing cells during Treg sorting yields a population with increased purity, lineage stability, and suppressive capabilities, which may benefit Treg ACT for the treatment of autoimmune diseases.


Assuntos
Doenças Autoimunes , Fatores de Transcrição Forkhead , Terapia Baseada em Transplante de Células e Tecidos , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interferon gama , Linfócitos T Reguladores
9.
J Leukoc Biol ; 112(4): 759-769, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35352381

RESUMO

Nonhuman primates (NHPs) represent one of the most important models for preclinical studies of novel biomedical interventions. In contrast with small animal models, however, widespread utilization of NHPs is restricted by cost, logistics, and availability. Therefore, we sought to develop a translational primatized mouse model, akin to a humanized mouse, to allow for high-throughput in vivo experimentation leveraged to inform large animal immunology-based studies. We found that adult rhesus macaque mobilized blood (AMb) CD34+-enriched hematopoietic stem and progenitor cells (HSPCs) engrafted at low but persistent levels in immune-deficient mice harboring transgenes for human (NHP cross-reactive) GM-CSF and IL3, but did not in mice with wild-type murine cytokines lacking NHP cross-reactivity. To enhance engraftment, fetal liver-derived HSPCs were selected as the infusion product based on an increased CD34hi fraction compared with AMb and bone marrow. Coupled with cotransplantation of rhesus fetal thymic fragments beneath the mouse kidney capsule, fetal liver-derived HSPC infusion in cytokine-transgenic mice yielded robust multilineage lymphohematopoietic engraftment. The emergent immune system recapitulated that of the fetal monkey, with similar relative frequencies of lymphocyte, granulocyte, and monocyte subsets within the thymic, secondary lymphoid, and peripheral compartments. Importantly, while exhibiting a predominantly naïve phenotype, in vitro functional assays demonstrated robust cellular activation in response to nonspecific and allogenic stimuli. This primatized mouse represents a viable and translatable model for the study of hematopoietic stem cell physiology, immune development, and functional immunology in NHPs. Summary Sentence: Engraftment of rhesus macaque hematopoietic tissues in immune-deficient mice yields a robust BLT/NeoThy-type primatized mouse model for studying nonhuman primate hematopoiesis and immune function in vivo.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Transplante de Células-Tronco Hematopoéticas , Animais , Antígenos CD34 , Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Macaca mulatta , Camundongos , Camundongos SCID , Camundongos Transgênicos
10.
Front Immunol ; 12: 739048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603322

RESUMO

Background: The pathogenesis of type 1 diabetes (T1D) involves complex genetic susceptibility that impacts pathways regulating host immunity and the target of autoimmune attack, insulin-producing pancreatic ß-cells. Interactions between risk variants and environmental factors result in significant heterogeneity in clinical presentation among those who develop T1D. Although genetic risk is dominated by the human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional risk variants are significantly associated with the disease, including polymorphisms in immune checkpoint molecules, such as SIRPG. Scope of Review: In this review, we summarize the literature related to the T1D-associated risk variants in SIRPG, which include a protein-coding variant (rs6043409, G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We discuss how dysregulated expression or function of SIRPs and CD47 in antigen-presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic ß-cells could potentially promote T1D development. Major Conclusions: We propose a hypothesis, supported by emerging genetic and functional immune studies, which states a loss of proper SIRP:CD47 signaling may result in increased lymphocyte activation and cytotoxicity and enhanced ß-cell destruction. Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47 to intervene in T1D.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Diferenciação/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Estudos de Associação Genética , Humanos , Imunoterapia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Polimorfismo Genético , Receptores Imunológicos/genética , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
Front Immunol ; 12: 723544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394131

RESUMO

Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/terapia , Humanos , Camundongos , Linfócitos T/imunologia
12.
Wound Repair Regen ; 28(6): 812-822, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32686215

RESUMO

Translation of wound healing research is limited by the lack of an appropriate animal model, due to the anatomic and wound healing differences in animals and humans. Here, we characterize healing of grafted, full-thickness human skin in an in vivo model of wound healing. Full-thickness human skin, obtained from reconstructive operations, was grafted onto the dorsal flank of NOD.Cg-KitW41J Tyr + Prkdcscid Il2rgtm1Wjl /ThomJ mice. The xenografts were harvested 1 to 12 weeks after grafting, and histologic analyses were completed for viability, neovascularization, and hypoxia. Visual inspection of the xenograft shows drying and sloughing of the epidermis starting at week four. By week 12, the xenograft appears healed but has lost 63.05 ± 0.24% of the initial graft size. There is histologic evidence of epidermolysis as early as 2 weeks, which progresses until week 4, when new epidermis appears from the wound edges. Epidermal regeneration is complete by week 12, although the epidermis appears hypertrophied. An initial increase of infiltrating immune mouse cells into the xenograft normalizes to baseline 6 months after grafting. Neovascularization, as evidenced by positive staining for the proteins human CD31 and alpha smooth muscle actin, is present as early as 2 weeks after grafting at the interface between the xenograft and the mouse tissue. CD31 and alpha smooth muscle actin staining increased throughout the xenograft over the 12 weeks, leading to greater viability of the tissue. Likewise, there is increased Hypoxia Inducible Factor 1-alpha expression at the interface of viable and nonviable tissue, which suggest a hypoxia-driven process causing early graft loss. These findings illustrate human skin wound healing in an ischemic environment, providing a timeline for use of full thickness human skin after grafting in a murine model to study mechanisms underlying human skin wound healing.


Assuntos
Queimaduras/cirurgia , Isquemia/etiologia , Neovascularização Patológica/etiologia , Transplante de Pele/métodos , Pele/lesões , Cicatrização/fisiologia , Angiografia , Animais , Queimaduras/complicações , Queimaduras/patologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Neovascularização Patológica/patologia , Pele/irrigação sanguínea , Pele/patologia , Transplante Heterólogo
13.
Curr Protoc Stem Cell Biol ; 54(1): e113, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32588980

RESUMO

New human pluripotent stem cell (hPSC)-derived therapies are advancing to clinical trials at an increasingly rapid pace. In addition to ensuring that the therapies function properly, there is a critical need to investigate the human immune response to these cell products. A robust allogeneic (or autologous) immune response could swiftly eliminate an otherwise promising cell therapy, even in immunosuppressed patients. In coming years, researchers in the regenerative medicine field will need to utilize a number of in vitro and in vivo assays and models to evaluate and better understand hPSC immunogenicity. Humanized mouse models-mice engrafted with functional human immune cell types-are an important research tool for investigating the mechanisms of the adaptive immune response to hPSC therapies. This article provides an overview of humanized mouse models relevant to the study of hPSC immunogenicity and explores central considerations for investigators seeking to utilize these powerful models in their research. © 2020 Wiley Periodicals LLC.


Assuntos
Células-Tronco Pluripotentes/imunologia , Animais , Quimerismo , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Modelos Animais , Transplante de Células-Tronco
14.
J Leukoc Biol ; 107(1): 9-10, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682279

RESUMO

Discussion on exhaustion/senescence marker profiles on human T cells in BRGSF-A2 humanized mice and how they resemble those in human samples; describes how this model fits into the humanized-mouse research field.


Assuntos
Linfócitos T , Animais , Biomarcadores , Humanos , Camundongos
15.
J Am Heart Assoc ; 8(15): e012135, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31313646

RESUMO

Background Arterial bypass and interposition grafts are used routinely across multiple surgical subspecialties. Current options include both autologous and synthetic materials; however, each graft presents specific limitations. Engineering artificial small-diameter arteries with vascular cells derived from induced pluripotent stem cells could provide a useful therapeutic solution. Banking induced pluripotent stem cells from rare individuals who are homozygous for human leukocyte antigen alleles has been proposed as a strategy to facilitate economy of scale while reducing the potential for rejection of induced pluripotent stem cell-derived transplanted tissues. Currently, there is no standardized model to study transplantation of small-diameter arteries in major histocompatibility complex-defined backgrounds. Methods and Results In this study, we developed a limb-sparing nonhuman primate model to study arterial allotransplantation in the absence of immunosuppression. Our model was used to compare degrees of major histocompatibility complex matching between arterial grafts and recipient animals with long-term maintenance of patency and function. Unexpectedly, we (1) found that major histocompatibility complex partial haplomatched allografts perform as well as autologous control grafts; (2) detected little long-term immune response in even completely major histocompatibility complex mismatched allografts; and (3) observed that arterial grafts become almost completely replaced over time with recipient cells. Conclusions Given these findings, induced pluripotent stem cell-derived tissue-engineered blood vessels may prove to be promising and customizable grafts for future use by cardiac, vascular, and plastic surgeons.


Assuntos
Artérias/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Complexo Principal de Histocompatibilidade , Grau de Desobstrução Vascular , Animais , Autoenxertos , Feminino , Macaca , Masculino , Modelos Animais
16.
Stem Cell Reports ; 12(6): 1269-1281, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31080110

RESUMO

Contractile to synthetic phenotypic switching of smooth muscle cells (SMCs) contributes to stenosis in vascular disease and vascular transplants. To generate more contractile SMCs, we performed a high-throughput differentiation screen using a MYH11-NLuc-tdTomato human embryonic stem cell reporter cell line. We identified RepSox as a factor that promotes differentiation of MYH11-positive cells by promoting NOTCH signaling. RepSox induces SMCs to exhibit a more contractile phenotype than SMCs generated using PDGF-BB and TGF-ß1, two factors previously used for SMC differentiation but which also cause intimal hyperplasia. In addition, RepSox inhibited intimal hyperplasia caused by contractile to synthetic phenotypic switching of SMCs in a rat balloon injury model. Thus, in addition to providing more contractile SMCs that could prove useful for constructing artificial blood vessels, this study suggests a strategy for identifying drugs for inhibiting intimal hyperplasia that act by driving contractile differentiation rather than inhibiting proliferation non-specifically.


Assuntos
Diferenciação Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Células-Tronco Pluripotentes/metabolismo , Túnica Íntima/metabolismo , Animais , Becaplermina/metabolismo , Modelos Animais de Doenças , Humanos , Hiperplasia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Células-Tronco Pluripotentes/patologia , Ratos , Fator de Crescimento Transformador beta1/metabolismo , Túnica Íntima/patologia
17.
Stem Cells ; 37(7): 910-923, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087611

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) exhibit a fetal phenotype that limits in vitro and therapeutic applications. Strategies to promote cardiomyocyte maturation have focused interventions on differentiated hPSC-CMs, but this study tests priming of early cardiac progenitor cells (CPCs) with polyinosinic-polycytidylic acid (pIC) to accelerate cardiomyocyte maturation. CPCs were differentiated from hPSCs using a monolayer differentiation protocol with defined small molecule Wnt temporal modulation, and pIC was added during the formation of early CPCs. pIC priming did not alter the expression of cell surface markers for CPCs (>80% KDR+/PDGFRα+), expression of common cardiac transcription factors, or final purity of differentiated hPSC-CMs (∼90%). However, CPC differentiation in basal medium revealed that pIC priming resulted in hPSC-CMs with enhanced maturity manifested by increased cell size, greater contractility, faster electrical upstrokes, increased oxidative metabolism, and more mature sarcomeric structure and composition. To investigate the mechanisms of CPC priming, RNAseq revealed that cardiac progenitor-stage pIC modulated early Notch signaling and cardiomyogenic transcriptional programs. Chromatin immunoprecipitation of CPCs showed that pIC treatment increased deposition of the H3K9ac activating epigenetic mark at core promoters of cardiac myofilament genes and the Notch ligand, JAG1. Inhibition of Notch signaling blocked the effects of pIC on differentiation and cardiomyocyte maturation. Furthermore, primed CPCs showed more robust formation of hPSC-CMs grafts when transplanted to the NSGW mouse kidney capsule. Overall, epigenetic modulation of CPCs with pIC accelerates cardiomyocyte maturation enabling basic research applications and potential therapeutic uses. Stem Cells 2019;37:910-923.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Poli I-C/farmacologia , Receptores Notch/genética , Animais , Tamanho Celular , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Rim , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/metabolismo , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Transplante de Células-Tronco/métodos , Transplante Heterotópico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Sci Rep ; 8(1): 10452, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29993013

RESUMO

Extracellular matrix (ECM) plays an important developmental role by regulating cell behaviour through structural and biochemical stimulation. Tissue-specific ECM, attained through decellularization, has been proposed in several strategies for tissue and organ replacement. Decellularization of animal pancreata has been reported, but the same methods applied to human pancreas are less effective due to higher lipid content. Moreover, ECM-derived hydrogels can be obtained from many decellularized tissues, but methods have not been reported to obtain human pancreas-derived hydrogel. Using novel decellularization methods with human pancreas we produced an acellular, 3D biological scaffold (hP-ECM) and hydrogel (hP-HG) amenable to tissue culture, transplantation and proteomic applications. The inclusion of a homogenization step in the decellularization protocol significantly improved lipid removal and gelation capability of the resulting ECM, which was capable of gelation at 37 °C in vitro and in vivo, and is cytocompatible with a variety of cell types and islet-like tissues in vitro. Overall, this study demonstrates the characterisation of a novel protocol for the decellularization and delipidization of human pancreatic tissue for the production of acellular ECM and ECM hydrogel suitable for cell culture and transplantation applications. We also report a list of 120 proteins present within the human pancreatic matrisome.


Assuntos
Matriz Extracelular/química , Hidrogéis/síntese química , Pâncreas/citologia , Tecidos Suporte/química , Animais , Humanos , Lipídeos/isolamento & purificação , Proteínas/análise , Engenharia Tecidual/métodos
19.
Stem Cell Reports ; 10(4): 1175-1183, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29576539

RESUMO

Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs). Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue.


Assuntos
Timo/transplante , Animais , Sobrevivência Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Recém-Nascido , Camundongos , Modelos Animais , Miócitos Cardíacos/citologia
20.
Proc Natl Acad Sci U S A ; 114(30): E6072-E6078, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696312

RESUMO

Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.


Assuntos
Artérias/citologia , Células Endoteliais/transplante , Neovascularização Fisiológica , Células-Tronco Pluripotentes/fisiologia , Engenharia Tecidual/métodos , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Células Endoteliais/citologia , Humanos , Camundongos , Infarto do Miocárdio/terapia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...